Journal of Organometallic Chemistry, 52 (1973) 321-331 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

THE EFFECT OF SOLVENT UPON THE RATES AND MECHANISMS OF ORGANOMETALLIC REACTIONS

321

III. NOR SPECTRA AND STRUCTURES OF MOLECULAR COMPLEXES OF METHYLTIN HALIDES AND TIN TETRAHALIDES

V. S. PETROSYAN, N. S. YASHINA and O. A. REUTOV

Chemistry Department, M. V. Lomonosov State University, Moscow B-234 (U.S.S.R.) E. V. BRYUCHOVA and G. K. SEMIN

Institute of Organoelement Compounds of the Academy of Sciences, Moscow B-312 (U.S.S.R.) (Received September 19th, 1972)

SUMMARY

NQR spectra have been obtained for molecular complexes of methyltin halides or tin tetrahalides containing various electron-donating molecules. The structures have been shown to be a function of the number of methyl groups and halogens present in the methyltin halides and of the nature of the electron donor. An anomalous temperature dependence of the NOR frequencies has been observed in some cases.

INTRODUCTION

The reported structures of organotin complexes¹ and the elemental analyses of methyltin halides complexed with various electron donors² suggest that trialkyltin halides form R₃SnX·L complexes with monodentate ligands and 2R₃SnX·L complexes with bidentate ligands, whereas dialkyltin dihalides, alkyltin trihalides and tin tetrahalides form $R_n SnX_{4-n}$. 2L complexes with monodentate ligands and $R_n SnX_{4-n}$. L complexes with bidentate ligands.

It has been demonstrated^{3,4} that the technique of nuclear quadrupole resonance (NQR) spectroscopy is quite promising for the study of molecular complexes of metal halides since NOR frequencies are very sensitive to the electron-density distribution in the molecule. NOR spectra of such complexes reflect, firstly, the extent of charge transfer and, secondly, the arrangement of the halogen atoms in the complex. We have used NQR spectroscopy to study molecular complexes of methyltin halides prepared as described previously² thus extending such studies of $Sn-Hal$ bonds⁵⁻⁸.

RESULTS AND DISCUSSION

I. Complexes of the type $Me_3SnBr \cdot L$ and $2Me_3SnBr \cdot L$

Table 1 contains the ⁸¹Br and ⁷⁹Br NQR parameters for Me₃SnBr and its molecular complexes while Fig. 1 is a schematic representation of the spectra ob-

TABLE 1

322

System	Temp. (K)	$v(^{81}Br)$ (MHz)	Signal/noise ratio	$\nu(^{79}Br)$ (MHz)	$v_{\text{av}}(^{81}Br)$ (MHz)	$\delta(v, r)$ $(\%)$
Me _a SnBr	77	93.50	100	111.92	93.50	
	293	95.47	30	114.29	95.47	21
$Me3SBr \cdot DEE$	77	89.28	20	106.90	89.28	4.5
2 Me _a SnBr-dioxane	77	82.53	50	98.78	82.53	11.7
Me ₃ SnBr·Me ₂ CO	77	79.95	10	95.74.	80.85	13.5
		81.75	10	97.89		
Me ₃ SnBr ₃ DME	77	79.86	50	95.51	76.86	14.6
Me ₃ ShBr ₁ THF	77	76.48.	10	91.55	76.48	18.2
$Me3SBr \cdot DMF$	77	67.34	-50	80.64	67.34	28.0
	293	70.25	-10	84.12	70.25:	24.9
$Me3SnBr \cdot HMPT$	77	64.87	50	77.64	64.87	30.6
$Me3SBr \cdot Py$	77	62.57	30	74.91	61.46	34.3
		62.28	30	74.55		
		59.54	30	71.27		
	293	65.26	10	78.15	65.26	30.2
Me ₃ SnBr DMSO	77	56.32	30	67.42	56.32	39.8
2 Me ₃ SnBr·TMED	77	55.02	30	65.87	55.02	41.1

⁸¹Br AND⁷⁹Br NQR SPECTRA OF Me₃SnBr CCMPLEXES

$$
\delta(v_{\rm v})=\frac{v_{\rm av}(\chi)-v(M)}{2}
$$

le₃SnBr) ν (Me₃SnBr)

 \times 100 represents the shift with respect to Me₃SnBr.

Fig. 1. ⁸¹Br NQR spectra of Me₃SnBr complexes.

tained. Generally, the spectra consist of one line which demonstrates the existence of one crystallographically independent molecule in the elementary cell. The splittings in the spectra of Me₃SnBr · Me₂CO and Me₃SnBr · Py are low, indicating that they are of a crystallographical nature, as is verified by the fact that the splittings vanish at room temperature. rike 1

SOLVENT EFFECTS IN ORGANOMETALLIC REACTIONS. III 323

The shape of the NOR spectrum of Me₃SnBr solution in DME depends on the ratio of components present. At a ratio of $1/1$, one line is observed (Table 1, Fig. 1). which may be characteristic of the donor strength of the DME oxygen with respect to Me₃SnBr. At a ratio of 2/1, additional lines appear $[v(^{81}Br) 89.28; v(^{79}Br) 106.90]$ which are difficult to assign in an unambiguous manner.

The Townes-Dailey model⁹ assumes that the halogen NOR frequency is a function of the order of the M-Hal bond, of its ionic character and of the extent of halogen sp-hybridisation. For the compounds studied here, it is not unreasonable to assume that the double-bond contribution is insignificant while the halogen sphybridisation is low and invariable. If this is the case, then the variation in the NQR frequency caused by complex formation may be attributed to the variation in the ionic character of the bond. Our data demonstrate that the bromine resonance frequencies in all the compounds studied are lower than those in solvent-free Me,SnBr, and that this may be attributed to a greater ionic character of the Sn-Br bonds in the complexes compared with those in the solvent-free species. This conclusion agrees well with IR spectra recorded for solutions of $Me₃SnHal^{10,11}$ and with X-ray data¹² which reveal that $Me₃SnCl·Py$ is a trigonal bipyramid (I) with the Sn-Cl bond longer than that in gaseous $Me₃SnCl¹³$.

The complexes are donor-acceptor in character with the coordinating ligand being the donor, while the halogen NQR frequency shift is proportional to the charge transferred^{3,4}. For this reason the bromine frequency shift may be a measure of the variation in the donor activity of the ligands. NQR data show that complexes of the type $Me₃SnBr$ - L exhibit the following series of donor activity for monodentate ligands :

 $DEE <$ acetone $<$ THF \ll DMF $<$ HMPT $<$ Py $<$ DMSO

For bidentate ligands, the following series applies :

 $\overline{Br-Sn-D}$ $\overline{CH_2-CH_2}$ $\overline{O-Sn-Br}$

 $\begin{array}{ll} \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{2}\right)^{2} \\ \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{2}\right)^{2} \\ \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{2}\right)^{2} & \left(\$

 $dioxane < DME \leq TMED$

Since structure (II) (only one donor atom per Me,SnBr molecule) may be expected for Me,SnBr complexes containing bidentate ligands, the following series may be constructed to describe the donor activities of ligands with respect to $Me_{3}SnBr$:

DEE $<$ dioxane $<$ acetone $<$ DME $<$ THF \leq DMF $<$ HMPT $<$ Py $<$

 $DMSO < TMED$

The first five ligands in the series are weak donors while the remaining five are strong donors.

II. Complexes of the type $Me_2SnHal_2 \cdot 2L$ and $Me_2SnHal_2 \cdot L$

Five structures (see Fig. 2 and the spectra expected for them) may be assumed for octahedral complexes of dimethyltin dihalides containing two monodentate ligands or one bidentate ligand.

TABLE 2

⁸¹Br AND⁷⁹Br NQR SPECTRA OF Me₂SnBr₂ COMPLEXES

System	Temp. (K)	$v(^{81}Br)$ (MHz)	Signal/noise ratio	$v(^{79}Br)$ (MHz)	$v_{av}({}^{81}Br)$ (MHz)	$\delta(v_r)^a$ $(\%)$
Me ₂ SnBr ₂	77	109.98	100	131.66	110.57	
		111.17	80	133.08		
	293	110.92	45	132.78	111.52	0.8
		112.12	40	134.21		
$Me2SnBr2$ dioxane	77	104.82	50	125.50	104.89	5.1
		104.96	50	125.65		
	293	105.97	80°	126.85	105.97	4.2
Me ₂ SnBr ₂ ·2THF	77	99.04	50	118.56	99.04	10.4
$Me2SnBr2·2Me2CO$	77	93.72	30	112.16	93.88	15.1
		94.05	30	112.62		
Me ₂ SnBr ₂ · DME	77	89.84	40	107.48	89.84	18.7
Me ₂ SnBr ₂ ·2Py	77	65.76	20	78.72	65.76	40.5
	293	64.74	5	77.50	64.74	41.4
Me ₂ SnBr ₂ ·2HMPT	77	60.61	30	72.57	60.61	45.2
$Me2SnBr2 - 2DMF$	77	60.02	20	71.85	60.02	45.7
	293	59.74	5	71.47	59.74	46.0
Me ₂ SnBr ₂ 2DMSO	77	59.46	30	71.20	59.46	46.2

 $\frac{\nu_{av}(\chi) - \nu_{av}(Me_2SnBr_2)}{\nu_{av}(Me_2SnBr_2)} \times 100$ represents the shift with respect to Me₂SnBr₂.

In Table 2 are listed the ⁸¹Br and ⁷⁹Br NQR parameters for $Me₂SnBr₂$ and its molecular complexes while Fig. 3 is a schematic representation of the spectra obtained.

Structure (c) may be ruled out immediately since only singlets or slightly split doublets (crystallographic non-equivalence of the halogens) are observed in all the spectra. On the other hand, the Mössbauer quadrupole splittings found in spectra of the same complexes¹⁴ demonstrate (cf. ref. 15) that the CH₃ groups are arranged trans in these complexes, *i.e.* the complexes possess either structure (a) or (b) (Fig. 2). The

324

frequency shifts observed for the bromines with respect to solvent-free $Me₂SnBr₂$ **(Table 2) enable the donors to be subdivided into those which are relatively weak (dioxane, THF, acetone, DME) and those which are. stronger (Py, HMFT, DMF,** DMSO). The spectrum of Me₂SnBr₂ · 2DEE coincides with the spectrum of solventfree Me₂SnBr₂ and this may be explained by assuming that the solvent-free species is **frozen out of its solution in DEE at 77 K.**

._

Unfortunately, Me₂SnCl₂ is only sparingly soluble in ethers. This, together **with the low sensitivity of the instrument in the frequency range employed, has** considerably limited the number of $Me_2SnCl_2 \cdot 2L$ complexes examined (Table 3, Fig. 4). The spectrum of solvent-free Me₂SnCl₂, as well as the spectrum of the dioxane **complex, consists of a singlet,** *i.e. the* **complex may be assumed, as for Me,SnBr,, to possess either structure (a) or(b) (Fig. 2). On the other hand,** the **DME complexes (l/l) and, especially, the acetone complexes (l/2) exhibit larger splittings which point to the**

TABLE 3

³⁵Cl NQR SPECTRA OF Me₂SnCl₂ COMPLEXES

 $\alpha_{\delta(\nu)} = \frac{v_{av}(\chi) - v(\text{Me}_2\text{SnCl}_2)}{v_{av}(\chi) - v(\text{Me}_2\text{SnCl}_2)}$ **v(Me,SnCl;) x 100 represents the shift with respect io Me,SnCl,.**

Fig. 4. ³⁵Cl NQR spectra of Me₂SnCl₂ complexes.

non-equivalence of the halogens, *i.e.* structure (c) may be present in this case. For $Me₂SnCl₂·DME$ the resonance frequencies found for both the chlorines are lower than the frequency observed in solvent-free Me₂SnCl₁ whereas the spectrum of Me₂SnCi₂ 2Me₂CO exhibits one line at a higher frequency relative to that of the solvent-free compound. This may be explained in terms of the appreciable selfassociation of solid $Me₂SnCl₂$, this leading to an increase in the ionic character of the Sn–Cl bond in the resulting associated complex and to a respective decrease in the NOR frequency. This conclusion agrees with X-ray data obtained for crystalline $Me₂SnCl₂¹⁶$ which indicate that the Sn-Cl bonds in the associated complex are longer than those in gaseous $Me₂SnCl₂¹³$. The data also demonstrate that DME is a stronger electron donor than acetone in agreement with Mössbauer spectroscopic data on the systems¹⁴.

III. Complexes of the type MeSnHal₃.2L and MeSnHal₃.L

Three octahedral structures may be assumed for methyltin trihalide complexes containing two monodentate, or one bidentate, ligand (Fig. 5).

Fig. 5.

Tables 4 and 5 contain the NQR parameters of the complexes studied while Figs. 6 and 7 present schematic representations of the spectra obtained.

The splitting is more than $7\frac{9}{4}$ in the spectrum of solvent-free MeSnBr₃. This is significantly greater than the values possible for molecular crystals which lie in the range 1.5 to $2\frac{9}{17}$. It is probable that so great a non-equivalence may be explained by assuming that self-association occurs in the solid state leading to the formation of a six-coordinate tin compound. This agrees well with the NQR intensity ratio. Normally, the formation of associated complexes leads to the NQR frequencies of the bridged halogens being lower than those of the terminal halogens¹⁸. The fact that the intensity of the lower-frequency line is twice the intensity of the higher-

TABLE 4

⁸¹Br AND⁷⁹Br NQR SPECTRA OF MeSnBr₃ COMPLEXES

System	Temp. (K)	$v(^{81}Br)$ (MHz)	Signal/noise ratio	$v(^{79}Br)$ (MHz)	$v_{av}({}^{81}Br)$ (MHz)	$\delta(v_x)^a$ (%)
MeSnBr ₃	77	138.02	20	165.24	141.46	
		148.34.	v.	177.54		
	293	135.43	20	162.18	139.39	1.5
		143.35	10	171.66		
2MeSnBr ₃ dioxane	77	124.61	40	149.15	142.54	0.76
		າວານ	80	181.32		
MeSnBr, 2THF	77	103.28	10	123.50		17.4
		106.12	10	127.00	116.84	
		141.12	10	168.96		

 $\sigma \delta(v_x) = \frac{v_{av}(\chi) - v_{av}(\text{MeSnBr}_3)}{v_{av}(\text{MeSnBr}_3)} \times 100$ represents the shift with respect to MeSnBr₃.

TABLE 5

³⁵Cl NQR SPECTRA OF MeSnCl₃ COMPLEXES

 $^a \delta(v_x) = \frac{v_{\rm av}(\chi) - v_{\rm av}(\text{MeSnCl}_3)}{v_{\rm av}(\text{MeSnCl}_3)} \times 100$ represents the shift with respect to MeSnCl₃.

frequency line reveals that there are two bridged, and one terminal, halogen in each-MeSnBr₃ molecule. A similar state of affairs exists in MeSnCl₃. Thus, the solvent-free methyltin trihalides possess either structure (a) or (b) (Fig. 5), L being the bridged halogen belonging to adjacent molecules. For a five-coordinate tin compound, the intensity ratio would have been opposite to that described above.

The signals for MeSnHal₃. 2THF and MeSnCl₃ dioxane are shifted to lower frequencies relative to those of the spectra of solvent-free MeSnHal₃. The more intense signal, which is associated with two halogens, is shifted much further than the one associated with one halogen, i.e. the different ligands affect the ionic character of

the tin-halogen bonds to a different extent. Hence, structure (b), in which all three halogen atoms should be equally affected by the presence of ligands, can be ruled out. For this reason, it is probable that the complexes under discussion possess structure (a). In this structure the total cis and trans effect of the ligands upon the ionic character of the Sn-Hal bonds lying in the octahedral plane is greater than their respective total cis effect upon the ionic character of the tin-halogen bonds associated with the halogens positioned trans relative to the methyl groups, i.e. the trans effect in octahedral complexes of methyltin halides is stronger than the cis effect (cf. ref. 19). The spectrum of a five-coordinate complex such as 2 MeSnBr₃ dioxane^{2,14} corresponds to that of a trigonal bipyramid with two bromines being located in the plane and one at the apex.

The spectrum of MeSnBr₃ · 2DEE is identical with that of solvent-free MeSn- Br_3 , again because the associated complex of MeSnBr₃ is frozen out of its solution in DEE at 77 K. The spectrum of MeSnCl₃ \cdot 2DEE, in which all three halogen atoms are equivalent, may be explained in terms of the monomeric MeSnCl₃ being frozen out of solution in DEE at 77 K.

IV. Complexes of the type SnHal₄ - 2L and SnHal₄ - L (Hal = Br, I)

It has already been shown²⁰ that SnCl₄ complexes containing various donors may possess either structure (a) or (b) below depending on the nature of L. The structures, and the spectra expected for them, are presented in Fig. 8. Calculations show that in structure (b) the electron density localised over the equatorial halogens is

SOLVENT EFFECTS IN ORGANOMETALLIC REACTIONS. III

greater than that over the axial halogens.
The ⁸¹Br and ⁷⁹Br NQR spectra of SnBr₄ complexes and the ¹²⁷I NQR spectra of SnI₄ complexes containing various mono- or bidentate ligands have been

TABLE 6

 $^a \delta(\nu_x) = \frac{v_{av}(\chi) - v_{av}(\text{SnBr}_4)}{v_{av}(\text{SnBr}_4)} \times 100$ represents the shift with respect to SnBr₄. ^b Ref. 21.

TABLE 7

^a $\delta(v_z) = \frac{v_{av}(z) - v_{av}(\text{SnI}_4)}{v_{av}(\text{SnI}_4)} \times 100$ represents the shift with respect to SnI₄. ^b Ref. 21.

studied in this instance. The data obtained are summarised in Tables 6 and 7. The spectra are shown diagrammatically in Fig. 9.

The spectra of $SnBr₄$ complexes containing DEE, dioxane, DME, Py, or DMSO, as well as the 127 I NQR spectrum of SnI₄ \cdot 2Py agree with structure (a) whereas the spectra of $SnBr_{4}$ - $2HMPT$ and SnI_{4} - $2HMPT$ indicate a *cis* arrangement of the ligands as in the structure (b). The splitting in the structure (a) complexes is at or below the value characteristic of the crystallographical spiitting. For solvent-free $SnBr₄$, the spectrum exhibits the usual²¹ quartet attributable to the five-coordinate associated complex together with a singlet which appears after $SnBr_a$ has been kept in Dry-Ice for some time (Table 6, Fig 9). The singlet suggests that the compound may exist in another crystalline phase in which the four bromines are all equivalent. It is interesting that the same phase is formed after the addition of POCl₃, PhNO₂, or PhCH₂Cl to SnBr₄, materials which do not form complexes with SnBr₄.

Finally, the NQR spectra of some of the compounds studied (MeSnBr₃, Me₃SnBr DMF, Me₃SnBr Py, Me₂SnBr₂, Me₂SnBr₂ dioxane, Me₂SnCl₂ and $Me₂SnCl₂$ dioxane) indicate that the frequencies exhibit a positive temperature dependence.

Usually, the NQR frequency decreases with an increase in temperature, this being attributed to torsional vibrations of the molecule or its local sites²². The anomaly observed here may be attributed to a decrease in charge transfer due to the increased interatomic distances within the molecules.

EXPERIMENTAL

The syntheses of solid complexes of methyltin halides. with dioxane, HMPT, Py, DMF, DMSO, or TMED, and of solid $SnBr₄$ and $SnI₄$ complexes have already. been described previously².

Liquid complexes were obtained by mixing the necessary stoichiometric

SOLVENT EFFECTS IN ORGANOMBTALLIC REACTIONS- III 331

amounts of the components.

NQR spectra were measured on an ISSh-1 pulse NQR spectrometer at liquid nitrogen temperature (77 IS) or ai room temperature (293 K).

REFERENCES

- **1 R. C. Poller, J.** *OrganometaL Cfzem, 3* **(1965) 321.**
- **2 V. S. Petrosyan, N.S. Yashina and 0. A. Reutov, J.** *Organometal. Chem, 52* **(1973)** *3X*
- *3* **Yu.K. Maksyutin,T.kBabushkina,Y~N.GuryanovaandG.K.Semin,** *Theor.* **Chim.Acta, 14(1969)48.**
- **4 Yu. K. Maksyutin, Ye_ N. Guryanova and G. K. Semln, Usp.** *Khim,* **39.(1970)** *727.*
- *5* **E. V. Bryuchova, G. K. Semin, V. I. Goldanskii and V. V. Khrapov, Chem. Conunun.,(1968) 491.**
- **6 G. K. Semin and E. V. Bryuchova,** *Chem Commun, (1968) 605.*
- *7 G. K Semin,* **T. A. Babushkina, A_ K_ Prokol'yev and R G. Kostyanovskii, Izv. Aknd.** *Nauk SSSR, Ser.* **Khim., 6 (1968) 1401.**
- **8 I. S. Morosova, G. M. Tarasova, V. V. Ivanov, E. V. Bryuchova and N. S. Enikolopyan,** *Dokl. Akad. Nauk SSSR,* **199 (1971) 654.**
- **9 C. Townes and B. Dailey, J.** *Chem* **Phys., 17 (1949) 782**
- **10 J. R Beattie and G. P. McQuillan, J.** *Chem* **Soc,(1963) 1519.**
- **11 N. A. Matwijoff and R S. Drago,** *Inorg. Chem, 3* **(1964) 337.**
- 12 R. Hulme, *J. Chem. Soc.*, (1963) 1524.
- *13* **H. A. Skinner and L. E. Sutton,** *Trans. Faraday Sot., 40* **(1944) 164.**
- **14 V. S. Petrosyan, N. S. Yashina, S. G. Sacharov, 0. A. Reutov, V. Ya. Rochev and V. I. Goldanskii,** *J. OrganometaL Chem, 52* **(1973) 333.**
- **15 B. W. Fitzsimmons, N. J. Seeley and k W. Smith,** *J. Chem Sot. A,* **(1969) 143.**
- **16 A G. Davies, H. J. Milledge. L C. Puxley and P. J. Smith,** *J. Chem Sot. A,* **(1970) 2862.**
- **17 T. A_ Babushkk, V. I. Robas and G. K. Semin,** *Radiospectroskopiya Tvyordoga Tela, The* **Atomizdat Publishers, Moscow, 1967, p. 221.**
- **18 P. A_ Casabella, P. J. Bray and R. G. Barnes, J.** *Chem Phys., 30* **(1959) 1393.**
- **19 R S. Tobias, Znorg.** *Chem, 9 (1970)* **1296.**
- **20 E. A. Kravchenko. Yu. K. Maksyutin, Ye. N. Guryanova and G. K. Semin, Izv.** *Akad. Nauk SSSR, Ser. Khim.,* **(1968) 1271.**
- **21 A. Sdhawlow,** *J. Chem. Phys., 22* **(1954) 1211.**
- **22 H. Gayer, Z.** *Phys.,* **130 (1951) 227.**